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Various numerical methods are employed in order to approximate the nonlinear
Schrédinger equation, namely: (i) The classical explicit method, (ii) hopscotch method, (iii)
implicit-explicit method, (iv) Crank-Nicolson implicit scheme, (v) the Ablowitz—Ladik
scheme, (vi) the split step Fourier method (F. Tappert), and (vii) pseudospectral (Fourier)
method (Fornberg and Whitham). Comparisons between the Ablowitz—Ladik scheme, which
was developed using notions of the inverse scattering transform, and the other utilized
schemes are obtained.

1. INTRODUCTION

The nonlinear Schrédinger (NLS) equation describes a wide class of physical
phenomena (e.g., modulational instability of water waves, propagation of heat pulses
in anharmonic crystals, helical motion of a very thin vortex filament, nonlinear
modulation of collisionless plasma waves, self-trapping of a light beam in a color-
dispersive system [1}). The NLS equation was investigated numerically by Karpman
and Krushkal [2], Yajima and Outi [3], and Satsuma and Yajima [4], Tappert [5]
and Hardin and Tappert |6]. In the latter two works the NLS equation was integrated
by the split-step Fourier method. As discussed in part I Ablowitz and Ladik [7]
found nonlinear partial difference equations (based on the inverse scattering
transform) which can be used as a numerical scheme for the NLS equation. This
scheme has certain desirable properties [8] (see part I).

This work aims to compare the Ablowitz and Ladik scheme and other known
numerical methods for the NLS equation

iq,=q.:+ 214" q. (1.1)

Roughly speaking numerical methods for obtaining solutions to initial value problems
fall into two categories [9]: (1) finite difference methods and (2) function approx-
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imation methods. For the finite difference methods we seek approximation ¢ to the
original function g(x, ) at a set of points x,, ¢, on a rectangular grid in the x, ¢
plane, where x, = hn, t,, = km, h is the increment in x, and & is the increment in ¢. By
expanding function values at grid points in a Taylor series, approximations to the
differential equation involving algebraic relations between grid point values can be
obtained. The function approximation method approximates the exact solution g(x, 1)
by an approximate solution defined on a finite dimensional subspace

a2 d 0= C(0) 9,0 (1.2)

i=1

The @,(x) are appropriately chosen basis functions. Common choices for these are
the trigonometric functions, leading to a finite Fourier transform or pseudospectral
method and piecewise polynomial functions with a local basis, giving the finite
element method.

The following numerical methods were applied to the NLS equation.

1. Finite difference methods.

(a) Explicit methods.

(i) The classical explicit method.
(ii) The hopscotch method [10].
(b) Implicit methods.
(i) Implicit for the linear part and explicit for the nonlinear part (implicit—ex-
plicit).
(ii) Crank—Nicolson implicit scheme.
(iii) The Ablowitz and Ladik scheme.
2. Finite Fourier transform or pseudospectral methods.
(i) Split step Fourier method [6].
(ii) Pseudospectral method by Fornberg and Whitham {11].

In order to compare schemes, our approach for comparison is to (a) fix the
accuracy (L) for computations beginning at =0 and ending at t=T; (b) leave
other parameters free (e.g., 4t or 4x) and compare the computing time required to
attain such accuracy for various choices of the parameters [12].

These methods are applied to the NLS equation (1.1) subject to the following con-
ditions:

(A) THE INTIAL CONDITIONS
(i) 1-Soliton Solution
The exact solution of (1.1) on the infinite interval is
q(x, t) = 2pe 12X~ 4@ =+ ot 2/} ech(2nx — 8Ent — x,), (1.3)

where x,, 1, £ and y, are constants.
For initial conditions, Eq. (1.3) is used at £ =0, and the constants are chosen to be
xo=0,y,=0,¢=1, and n=0.5, 1,2, and 3.
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(ii) Collisions of Two Solitons [13]
The exact solution of (1.1) on the infinite interval is
q(x, 1) = G(x, )/F(x, t), (1.4)
where
F(x,t)=1+a(l, 1*) exp(n, + nf) + a(1, 2*) exp(n, + n5)
+a(2, 1%) exp(n, + 7¥) + a(2,2%) exp(n, + n¥)
+a(l,2, 1*,2%) exp(n, + n, + 0 + n¥), (1.5)

G(x, t) =exp(n,) + exp(n,) + a(1, 2, 1*) exp(n, + n, + 1)

+a(l,2,2%) exp(n, + 1, + n¥), (1.6)
a(i,j*)= (P, + P}), (1.7)
a(i,j)= (P;— P)", (1.8)
a(i*,j*) = (P} — P})", (1.9)
a(i,j, k*) = a(i,j) a(i, k*) a(j, k*), (1.10)

a(i,j, k*, 1*) = a(i, j) a(i, k*) a(i, I¥) a(j, k*) a(j, I¥) a(k*, 1%),  (L.11)

where * implies a complex conjugate, and

m=Px—Qit—n",  Q=ipP;, (1.12)
where P; and #{* are complex constants relating respectively to the amplitude and to
the phase of the ith soliton.

For initial conditions, Eq.(1.4) is used at r=0, and three different sets of
parameters are studied:

(i) P,=1-0.25i, P,=0.5+0.15; 7" = -2 and 7" =0,
(i) P,=2-0.5i P,=1+0.75, ” =2 and "’ = 1.0,
(i) P,=4—-2i, P,=3+1i,1n"=-9.04, n\¥ =2.1.

] 1 1 1 i { i 1 ] ) 1 i1 | 1 1 1 4

10 20
X

FiG. 1. Initial condition (1.3), # = 0.5 (i.e., amplitude = 1).
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Fic. 2. Initial condition (1.3), # =2 (i.e., amplitude = 4).
(B) BounDARY CONDITIONS

Periodic boundary conditions are used. The period is chosen to be [—20, 20] in the
case of small amplitudes and [—10, 10] in the case of relatively higher amplitudes.
(See Figs. (1) and (2).)

The numerical solution is compared with the exact solution. In addition, two of the
conserved quantities are computed, namely, [ |q|* dx, and [(|q|* —|dg/dx|*) dx.

2. THE REPRESENTATION OF THE NLS EQuaTioN USING NUMERICAL METHODS

1. FINITE DIFFERENCE METHODS
(A) ExpriciT METHODS
(i) The Classical Explicit Method

Using the classical emplicit method with central difference in time (for stability),
the finite difference representation of Eq. (1.1) is
m+1 m—1 m m m
. q9 —qy qn+1—2qn+qn—1 2\m m"
n — 2 s 2.1
! o Gx)’ +2(g°), q, 2.1

where |n| < p, and m > 0.

It is easily shown that this method is linearly (dropping the nonlinear term) stable
for At/(4x)* < 1/4. The truncation error of this scheme is of order (O((41)*)+
O((4x)*)).

(ii) A Hopscotch Scheme

The NLS equation (1.1) can be approximated by
(a) an explicit scheme:

m+1

; dn — 4y G249, + 4,4,

At (Ax)? +1dgql™ D q™  + (g7 . ) qr ], (2:2)
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(b) an implicit scheme:

.qm+l_q"m qm+1__2q"m+l+qm_+l N i
A = T (Y g+ (el 6l 23)

The hopscotch scheme applies Eq. (2.2) at odd values of (n + m) and (2.3) at even
values of (n + m). This combination makes (2.3) explicit. If we write Eq. (2.3) for
m=m — 1, and substitute the resulting equation into (2.2), the explicit scheme (2.2)
(after the first time step) may be replaced by

at =2y —qy " (2.4)
This scheme has truncation error of order (0((4¢)?) + O((4x)?)), and it is uncon-
ditionally stable according to linear analysis.

(B) ImpLICIT METHODS

(i) Implicit—Explicit Method

The Crank—Nicolson scheme is used to approximate the linear part and an explicit
average is used for the nonlinear part of the Eq. (1.1). The scheme is

m+1 m
iq" qn 1 m+1 m+1 m+1

it =2(Ax)2 lgn i =297+ a5+ g7 — 297" +q,7)]

+(|11f2";1)2 fIle+(|f1|T+1)2 G- (2.5)

The scheme is unconditionally stable according to linear analysis. The truncation
error is of order (O((4t) + O((4x)*)). To implement this scheme, a quasi-tridiagonal
system of equations is required to be solved at each time step. An optimization of the
Gaussian elimination method is introduced to solve this system. (See Appendix A.)
We carry out the elimination procedure only once and use back substitution
thereafter.

(ii) Crank—Nicolson Implicit Scheme

The difference scheme for representing Eq. (1.1) is

m+l1 _ m 1

l- qn qn — [qm
At 2(dx)* T

+ (gl ant + (gl g5 (2.6)

=20 g+ aqnt =20 g

This scheme is also unconditionally stable according to linear analysis. The trun-
cation error of this scheme is of order (0((4t)?) 4+ O((4x)?)).
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We briefly remark on how we solve (2.6). Rewrite Eq. (2.6) as

A ) . A
- A+ g =g
’1 m m . m m+1(\y2 m+1 mn2 m
=—2—{qn+.+qn-1}+(1—l)qn+At{(!q,, D gy "+ (gn D gyt
n=-N,.,N, (2.7)
and
A
/12_[2,
2(dx)

where the solution is sought in the region (—NAx < x < NAx) X (¢t > mAt,
m=1,2,.). From the periodic boundary conditions, we have g¢”, =gy and
gn.1=q"y,, for all m. Therefore, by applying Eqg. (2.7) at each mesh point (i.e.,
n=—N + l,.., N), we can write the totality of equations as

AQ"’Jrl =F, (2.8)
where
- | A - 1.,
i+4 7 _?T qner ™
A A
"—2- l+1 —7 q _n
A= N Qm+l:
) A
-3 i+h -%
A A,
R S o
and
A’ m m . m m+1py2 m+1 mpn2 m
Fj:_{q”n"'qj'ﬂ}‘*'(l_'l)qj' +At{(|qj )] q; +(|‘Ij ) qi'}
2

j=~N+1,.,N. (2.9)

The right-hand side of Eq. (2.8) is a function of known values of g at the previous
time level (¢ = mdt) and unknown values of ¢ at the new time level (¢t = (m + 1) 41).
We use an iteration technique to solve the system (2.8), and we assume (only in the
right-hand side) the values of ¢7'*' = gI" to start with. Therefore the right-hand side

n
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becomes known, and we use the same optimization of the Gaussian elimination
method for (2.5) to solve the system (2.8). The resulting values of g at the new time
level are substituted in the right-hand side of Eq. (2.8) to start the new iteration, and
we solve the new version of (2.8) by the previous method. We iterate until the con-
dition

m+1,k

max gt — gt R+ < tolerance

n=-—N,.,N

(where k is the number of iterations) is satisfied. The iteration procedure is repeated
at each new time level. The ¢™*'**! will be the approximated solution at the point
(ndx, (m + 1) 4¢).

(C) THE ABLOWITZ AND LADIK SCHEME

The scheme is

4 —an
At
1 n—1 .
=57 [9ne 200 a0 AY + a7 Ay
20y [T T ‘kﬂm " kﬂd
1
=27 +qn! +7[q;"(qn Gnir +an gty (2.10)
+ar aro gy +ant et Y+ 2 qnsl [ AR
k= —oC
n n—1
+2qm+l m+1* I—[ Am__q" : AmSk :’n+l 2: AmS;(n' ,
k=—ow k=—oc k=— oo
where
Sy =4y 9 1+Qk+14k ’QMH (qmﬂ)*’
AP =1+ dx)* qi g /(1 + (dx) gt gl ),
and

A, 8" =Sm+1_gm

This is a global scheme, unconditionally and nonlinearly stable, and the truncation
error is of order (O((4t)*) + O((4x)?)). A local scheme (with the same truncation
error) from (2.10) can be obtained if the sum terms are zero and the product terms
are equal to one.
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It is convenient to implement (2.10) as follows. Write the new time level equation

as
Guii —Q2+e)ayt + 4,7/ =B, (2.11)
where
8=M, lef< 1
At

(4t is supposed to be of the same order as Ax)

and

B,=—qy.1— 9, +2—¢)q,

n—1 n
=lar ( T1 ap—1)eamt( 11 ar-1)]
k=—oo k== — o0
Ax)? . il
) gnar gy g

B A (7 A S LA AR

+2q7qm qrtt [ AR +24r ey an ] AR

k= —~cw k=—oC
n n—1
—qy N 4,87—qr N 4,850, (2.12)
k=— k=—o0

(2.11) is solved by a version of the Crank—Nicolson back and forth sweep method for
the heat equation [14, 15]. We seek an equation of the form (at the new time level)

4,,1=aq,+b, (2.13)

suitable for computing g explicitly by sweeping to the right. For stability we require
la} < 1. Repeated substitution into (2.11) to eliminate g,,, and g, in favor of g, ,
gives

b,+la—Q2+¢))b, +|a*—Q2+¢€)a+1]g, ,=B,. (2.14)

Requiring the gq,_, term to drop out determines a (uniquely since |a|< 1) as a
solution of

a—2+&a+1=0 (2.15)

and leaves for b, a first-order difference equation.
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The corresponding homogeneous equation of (2.14) has a solution of the form
b,=k", (2.16)
where the constant k satisfies

k+la—Q2+e)]=0. (2.17)

It can be shown that the solution & of (2.17) corresponds to the second root (other
than a < 1) of the quadratic equation (2.15) determining a above, and that |k| > 1.
It follows that b can be computed explicitly by sweeping to the left,

b, ,=ab,—aB,. (2.18)

n
To obtain the solution g,,, first solve for b, from (2.18) then use (2.13) to calculate
q,- In order to calculate the b’s, we use an iteration procedure. We assumed that
gr*'=ql in Eq. (2.12) and b, = 0 to start with, and then we apply the Gauss—Seidel
technique [16] (in which the improved values are used as soon as they are computed)
to calculate the rest of the b’s. The calculated value of the b, (= b _,) is used to start
the new iteration, and the iteration procedure is repeated until the condition

max |b,_, — (ab, — aB,)| < tolerance

n=-N,.,N

is satisfied. Then we use the above procedure by sweeping to the right by means of
(2.13) to obtain the q’s. After the calculations of the ¢’s, we substitute their values
instead of ¢'*' in Eq. (2.12), and repeat the same procedure to calculate the b’s and

then the g’s. This procedure is repeated until the condition

max g7t 1% — gm R < tolerance
n=-—N,.,N

(where k is the number of iterations) is satisfied. The ¢ *"***' will be the approx-
imated solution at the point (ndx, (m + 1) At).

2. FINITE FOURIER TRANSFORM OR PSEUDOSPECTRAL METHODS
(i) Split Step Fourier Method (6]

For convenience the spatial period is normalized to [0, 2z], then equation (1.1)
becomes

2

. i1
zq,=?qu+2!q|2q, (2.19)
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where P is half the length of the interval of interest, and X = (x + P) n/P. (Here we
take P to be 20 or 10 depending on the calculation.) This interval is discretized by N
equidistant points, with spacing 4X = 2a/N. The function q(X, t), numerically defined
only on these points, can be transformed to the discrete Fourier space by

1 N:l o
(j(k, [) = Fq = _-N— L Q(jAX, l) ei-m]k/;\,’

J=0

N v (2.20)
k=——.,..,~1,0,1,.,——1.
2’ 0 2
The inversion formula is
1 . .
‘I(jAXa t) =F lé = \/777 A qA(k’ t) errl_/k/N’
N -
* (2.21)

N N
k= T Ty ey ‘la Oa 15-“’_7 1.
2 2

These transforms can be performed, efficiently with the fast Fourier transform (FFT)
algorithm [17]. Following [6] in order to apply the split step Fourier method for
Eq. (2.19) we (a) advance the solution using only the nonlinear part:

25, (2.22)

i‘it =21q
This can be solved exactly,
G, 1) = e~ 214 g(x, 0), (2.23)

where (X, ¢) is a solution of Eq. (2.22) and ¢(X, 0) is the solution of Eq. (2.19) at
t=0. (b) advance the solution according to

o

Iq9,= T xx (2.24)

by means of the discrete Fourier transform
q(X;, t + Aty = F (e F(G(X,, 1)) (2.25)

This method is second order accurate in A¢ and all order in Ax, and is uncon-
ditionally stable according to linear analysis.

(ii) Pseudospectral Method (Fornberg and Whitham) [11]

This is a Fourier (pseudospectral) method in which g{x, ¢) is transformed into
Fourier space with respect to x, and derivatives (or other operators) with respect to x
are then made algebraic in the transformed variable. Again for convenience the
spatial period is normalized to [0, 2z]. With this scheme, g,, can be evaluated as
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F~'{i*k*F(q)}. Combined with a leap frog time step the NLS equation (2.19) is then
approximated by

2
ﬂ&t+A0=ﬂXJ—A0+%m%%J“%HF@MﬂD
— 4idt|q)? q. (2.26)

Using the ideas of Fornberg and Whitham we make a modification in approximating
Eq. (2.19),

kznz

q(X, t +41) = q(X, t — A1) + 2iF ! (sin ( P At) F(q(x, t)))

— 4idt|q|* q. (2.27)

The difference between Egs. (2.26) and (2.27) is in the approximation of the linear
Eq. (2.24). The linear part of Eq. (2.27) will be exactly satisfied for any solution of
Eq. (2.24) (see [11]). Also it turns out that Eq.(2.26) is linearly (dropping the
nonlinear term) stabe for At/(4x)* < 1/x%, while Eq. (2.27) is unconditionally stable
according to linear analysis.

3. CONCLUSIONS

Various numerical methods are used in order to approximate the NLS equation
(1.1), namely; (i) The classical explicit method (2.1), (ii}) hopscotch method (2.2),
(2.3), (iii) implicit—explicit method (2.5), (iv) Crank—Nicolson implicit scheme (2.6),
(v) The Ablowitz and Ladik scheme (2.10), (vi) The split step Fourier method (2.23),
(2.25) and the (vii) pseudospectral method of Fornberg and Whitham (2.27). We
obtain a comparison between the Ablowitz—Ladik scheme and the other utilized
schemes. Our approach for comparison is to (a) fix the accuracy (L) for
computations beginning at ¢ = 0 and ending at ¢t = T’ (b) leave other parameters free
(e.g. 4t, or 4x), and compare the computing time required to attain such accuracy for
various choices of the parameters. For the comparison two sets of initial conditions
are studied: (A) 1-soluton solution with different values of the amplitude, (B)
Collisions of two solitons with different values of the parameters. According to this
approach we have made the following conclusions:

(1) The schemes explicit (i), implicit—explicit (iii), and the hopscotch (ii) take
more computing time than the other schemes ((iv, (v), (vi), (vii)) and the difference in
the computing time increases as the amplitude increased. The hopscotch method (ii)
takes less computing time than the other two methods ((i), (iii)) for the 1-soliton
cases, while the explicit (i) method took less computing time than the hopscotch (ii)
and the implicit—explicit (iii) methods for the 2-soliton cases.
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(2) The previous three methods; explicit (i), hopscotch (ii), and implicit—ex-
plicit (iii) do not appear in Tables I, IV, and VII since extremely long computing time
would be required.

(3) The Crank—Nicolson implicit method (iv) takes more computing time than
the Ablowitz—Ladik (local and global) method, the split step Fourier method and
Fornberg—Whitham method in the case of 1-soliton, and it becomes comparable with
the Ablowitz-Ladik local scheme for high amplitudes. In the case of 2-solitons,
Crank—Nicolson takes less computing time than the Ablowitz—Ladik local scheme.

(4) The Ablowitz—Ladik global scheme takes more computing time than the
local scheme in the case of small amplitudes, but for high amplitudes it is roughly
five times faster than the local, and the Crank—Nicolson schemes.

(5) The pseudospectral method is roughly two times faster than the
Ablowitz—Ladik local scheme for small amplitudes, but it is much faster for high
amplitudes. This method is roughly two times faster than the Ablowitz—Ladik global
scheme for high amplitudes. This method only proves to be faster than the split step
Fourier method for small amplitude 2-soliton cases.

(6) The split step Fourier method is faster than all the utilized methods for
small and large amplitudes for the 1-soliton case. In the average it is three times
faster than the Fornberg—Witham method. Also it proves to be faster than the
Fornberg—Whitham method for high amplitude 2-soliton cases. The tables and figures
exhibit the results.

As a conlcusion we find that the split step Fourier method is the best method for
the NLS equation, followed by the pseudospectral method then the Ablowitz—Ladik
global scheme. However we believe that if we were able to go to very high amplitudes
(our machine capability prevented this) the Ablowitz—Ladik global scheme would
improve dramatically and would prove to be better than the other methods. However
it should be noted that the NLS equation is quite unusual in the sense that the
nonlinearity is especially simple. This has a dramatic effect in the split step Fourier
method—see Eq. (2.22)}—which means that both steps admit to essentially exact
methods. Generally this will not be true (see paper III). We also note that whereas the
Ablowitz—Ladik scheme is O((4¢)?, (4x)?) the split step Fourier and Fornberg-
Whitham methods are of order O((4¢)?, (4x)?) for all p. (See also the calculations for
the KdV equation in paper IIL.) It is also worth mentioning that we have tried the
sweeping technique in implementing the implicit—explicit and the Crank—Nicolson
methods, and found that it did not affect the overall conclusions.

All the numerical calculations are inspected at every step by using the conserved
quantities f|g|*dx, and [ (|q|* —|8q/éx|?) dx (Tables I-VII). The two conserved
quantities are calculated by means of Simpson’s rule [18]. In the finite difference
schemes we have discretized U, by using a central difference approximation. In the
Fourier methods the derivatives are calculated using Fourier method. The
Ablowitz—Ladik global scheme is the only utilized scheme which has an infinite
number of conserved quantities. It is worth mentioning that we calculated the L,
error norm and found that it reflects the same conclusions as the L _ norm.
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PRRY;
<
£ 16
@
£ 15
i
14
13
12
11 1. Explicit.
2. Implicit & Explicit.
10 3. Implicit (Crank-Nicolson).
4. HMopscotch.
5. Split step Fourier method.
9 6. The Ablowitz and Ladik local scheme.
7. The Ablowitz and Ladik global scheme.
8 8. Fornberg and Whitham method.

1 2 3 4 5 6 7 8 Method

FiG. 3. Displays the computing time (£) which is required by each utilized method given in Table I.
1-soliton, amplitude = 1.

116 min.

Time {min.}

Explicit.

Implicit & Explicit.

Implicit {Crank-Nicolson}.

Hopscotch.

Split step Fourier method.

The Ablowitz and Ladik local scheme,
The Ablowitz and Ladik global scheme.
Fornberg and Whitham method.

[N N RN

1 2 3 4 5 6 7 8 Method

FiG. 4. Displays the computing time (£) which is required by each utilized method given in
Table II. 1-soliton, amplitude = 2.
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Time (min.)
&

Implicit {Crank-Nicolson).

Split step Fourier method.

The Ablowitz and Ladik local scheme.
The Ablowitz and Ladik global scheme.
Fornberg and Whitham method.

[T S

w

o

—

=3

.
— I~

1 2 3 4 8 Method

Fic. 5, Displays the computing time (E) which is required by each utilized method given in
Table I11. 1-soliton, amplitude = 4.

Time (min.}*

Implicit {Crank-Nicolson).

Split step Fourier method.

The Ablowitz and Ladik local scheme.
The Ablowitz and Ladik global scheme.
Fornberg and Whitham method.

=)
[y

1 2 3 4 5 Method
*: Each unit in time = 4 minutes.

F16. 6. Displays the computing time (E) which is required by each utilized method given in
Table IV. 1-soliton, amplitude = 6.
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Y
<
E 16
w
£ 15
i
14
13
12
u 1. Explicit.
2. Implicit-Explicit.
10 3. Implicit (Crank-Nicolson),
4, Hopscotch.
9 5. Split step Fourier method.
6. The Ablowitz and Ladik local scheme.
7. The Ablowitz and Ladik global scheme.
8 8. Fornberg and Whitham method.
7
6
5
4
3
2
1
0

1 2 3 4 5 6 7 8 Method

FiG. 7. Displays the computing time (£) which is required by each utilized method given in
Table V. Two solitons with amplitudes 0.5 and 1.

Time {min.)*

Explicit.

Implicit-Explicit.

Implicit (Crank-Nicolson).

Hopscotch.

Split step Fourier method.

The Ablowitz and Ladik local scheme.
The Ablowitz and Ladik global scheme.
Farnberg and Whitham method.

Method

*.

Each unit in time = 2 minutes.

FiG. 8. Displays the computing time (E) which is required by each utilized method given in
Table VI. Two solitons with amplitudes 1 and 2.
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Fic. 9.

Time (min.)*

TAHA AND ABLOWITZ

Implicit (Crank-Nicoison).

Split step Fourier method.

The Ablowitz and Ladik local scheme.
The Ablowitz and Ladik global scheme.
Fornberg and Whitham method.

JEF YRy Ry

Method

Each unit in time % 5 minutes.

Displays the computing time (E) which is required by each utilized method given in

Table VII. Two solitons with amplitudes 3 and 4.

APPENDIX A: AN OPTIMIZATION OF GAUSSIAN ELIMINATION

This method seeks to optimize Gaussian elimination by eliminating unnecessary
storage and multiplication by zeros. To begin we have the following quasi-tridiagonal

system

d, u, a Xy b,
L, d, u x | =156
Uy
B Iy_1dy Xy by

Instead of storing the N X N matrix, we store the augmented matrix in an N X 4
matrix whose elements are the tridiagonal elements and the b,’s. We then perform
Gaussian elimination on the N X 4 matrix keeping in mind their original locations in
the matrix. When this is done we have an upper triangular matrix and an original

system is of the form
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d, u, a X, b,
dy uf a x, | | b
Kk
di_juy_
dy | | *n by

where * values are the updated elements. Using back substitution we obtain the
solution. The total number of operations required to obtain the solution using this
method is (11N-15). The same idea can be applied to quasi-pentagonal system of

eq

uations and so on.
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